
Paper 015-2008

3 weeks of work in 5 minutes: A Designed Solution for Automatic Reporting
and Distribution

Danni Bayn, Capella University
Richard Koopmann Jr., Capella University

ABSTRACT
This paper describes a program designed to automatically generate reports on End of Course evaluations
and then email them to faculty. In addition to saving many hours of tedious labor by implementing an efficient
5-minute program, the delay of feedback was shortened considerably. This allows for the reports to be used
more effectively. After describing the program, highlights and ‘hiccups’ to development are discussed.

INTRODUCTION
In every aspect of human endeavor, feedback is crucial to performance improvement. While some skills
have immediate feedback built into their structure (e.g. riding a bike), most skills are reliant upon delayed
feedback: feedback that is riddled with noise or absent all together. As an example, take End of Course
evaluations for teachers. Evaluations are filled out by students at the very end of the course and then passed
off to the school. From here, they may or may not be disseminated to the rest of the faculty, and they may
come as raw data or generic reports. At Capella University, all End of Course Evaluations are online, so we
are lucky enough to already have the information in electronic format. Even with that advantage, the number
of hours it took to process this data combined with the length of time before feedback was delivered to
faculty, was extensive. This paper will briefly describe the old process that was used, before delving deeper
into a SAS® solution that reduced the quarterly workload for the reports from three weeks (or longer) to five
minutes.

Old Process
After acquiring the raw data from the End of Course evaluations for over 400 courses, data for individual
instructors were cut and pasted into an Excel workbook with pre-existing formulas and formatting
requirements. Each file was then checked, saved, and stored in a server side folder. This boring, tedious
process took one person a little over a week to complete and was very prone to human error.

Next, the administrator for each school (total of five), was responsible for going into the report folder,
gathering the appropriate file/set of files for the faculty, chair, and dean, and then emailing them out by hand.
The workload estimate was about two weeks from the schools that actually went through this entire process.
Most schools never distributed the reports at all.

New Process
The morning after the evaluation window has closed, the SAS program is updated for the current term and
then run. Within five minutes (ten minutes on a day where the server is being sluggish), all reports for all
faculty have been automatically generated, placed in the server side folder, and each faculty member has
their individual report waiting in their inbox.

Applications DevelopmentSAS Global Forum 2008

REPORT CREATION
To generate reports from the evaluations, the program uses three main macros. The first, Agg_Eval, does
most of the work. This macro calculates mean and standard deviations for the data at different levels of
aggregation. For example, it currently aggregates and reports on data at the course section level, then for
each course, then for each faculty, before finally reporting the final scores.

1 %macro Agg_Eval(data=, by=, out=);
2 proc sort data=&data out=_&data;
3 by &by;
4 run;
5
6 proc datasets nolist; delete &out; run; quit;
7
8 %let by_n = %sysfunc(countw(&by));
9 %do i = &by_n %to 1 %by -1;
10 %let by_&i = ;
11 %do j = 1 %to &i;
12 %let by_&i = &&by_&i %scan(&by, &j);
13 %end;
14
15 proc means data=_&data noprint;
16 by &&by_&i;
17 output out=_&data._&i(rename=(_freq_=N _stat_=Statistic)
18 drop=_type_
19 where=(statistic in('MEAN','STD'))
20);
21 var Course_Well_Organized -- Instructor_Quality
 Achieved_Learning_Outcomes -- Course_Quality;
22 run;
23 proc append base=&out data=_&data._&i; run; quit;
24 proc datasets nolist; delete _&data._&i; run; quit;
25 %end;
26 proc datasets nolist; delete _&data; run; quit;
27
28 proc sort data=&out;
29 by &by statistic;
30 run;
31
32 data &out(drop=i);
33 set &out;
34 array by_(*) &by;
35 do i = 1 to dim(by_);
36 if by_[i] = ' ' then by_[i] = '[ROLL-UP]';
37 end;
38 run;
39 %mend;

Applications DevelopmentSAS Global Forum 2008

The second macro is ce_file. It takes the path where the files are to be stored (defined at the top of the program) and
the Instructor’s name (from the dataset) to create and save the final excel report file. It creates two worksheets in
each, one containing the raw data and the other containing the aggregate data from the Agg_Eval macro.

40 %macro ce_file(type=,unit=);
41 %if %upcase(&type.) ne INSTRUCTOR
42 %then libname xls excel "&thePath.\2007-11 _&unit..xls" ver=2002;
43 %else libname xls excel "&thePath.\2007-11 &unit..xls" ver=2002;
44 ;
45
46 data xls.Submissions (dblabel=yes);
47 set ce_results(drop=Course_Start_Year Course_Start_Qtr);
48 where upcase(&type.) = upcase("&unit.");
49 run;
50
51 data xls.&type (dblabel=yes);
52 set &type;
53 where upcase(&type.) = upcase("&unit.");
54 run;
55
56 libname xls clear;
57 %mend;

The last macro, Process_List, is the one that controls the flow of the other two macros. It gets called with statements
like:

%Process_List(type=New_School);
or,

%Process_List(type=Instructor);

to indicate the desired level of aggregation. For example, the first call will produce reports that are aggregated on a
school by school basis; in other words, it creates a report file for each school. The second call, on the other hand,
creates reports aggregated by instructor and ends up producing individualized reports for each.

Process_List calls agg_eval (Line 59) to get the summary data and then saves it to files by calling ce_file (Line 71).
58 %macro Process_List(type=, by=Course_Start_Month &type Course Section
 Instructor);
59 %agg_eval(data=ce_results
60 , by=&by
61 , out=&type);
62 proc sql;
63 create table &type._List as
64 select distinct
65 &type.
66 from ce_results
67 ;
68 quit;
69 data &type._list;
70 set &type._list;
71 calltext=cats('%CE_File(type=&type.,unit=%str(', &type., '));');
72 call execute(calltext);
73 run;
74 %mend;

EMAIL DISTRIBUTION
Once all the files have been created, the following data step loops through each of the instructors, finds their reports,
and then emails them out. In our case, we saved the excel files based on the instructor’s name and then attached the
file to the email in the same fashion. This is one of the many places where it is very important to go through and clean
up your data, as any wayward character could stop the file from being saved and/or attached and relayed through
your mail server.

The body of the email is specified in lines 82-90 and the headers and attachments are defined below it in lines 91-98.
Any files that are not able to be sent get thrown into an error checking table.

Applications DevelopmentSAS Global Forum 2008

75 filename outbox email 'CourseFeedback@capella.edu';
76 data instructor_list instructor_Fails; *SEND FILES;
77 set rwork.instructor_list;
78 file outbox;

79 thefile = cat('2007-11 ', trim(Instructor), '.xls');
80 attach = catt("'&thePath.\", thefile ,"'");

81 if index(Instructor_Email,'@') then do;
82 put 'Hello ' Instructor_First_Name +(-1) ','
83 // 'Attached please find your End of Course Evaluation results. Please note
that there are two tabs in your results file: '
84 / ' - The Submissions tab contains all submitted End of Course Evaluations
for the course(s). Each row in this tab contains results from one learner. The
first few columns contain section and course information, while columns O to AP
contain the responses.'
85 / ' - The Instructor tab contains a summary of these data for each course
section, including means and standard deviations by section, course, and
overall.'
86 // 'For the quickest response, please direct inquiries to the
CourseFeedback@Capella.edu mailbox.'

87 // 'Thank you,'
88 / 'Course Feedback team'
89 / 'Office of Assessment & Institutional Research'

90 // 'ATTACHMENT: ' thefile /;

91 put '!EM_TO! ' Instructor_Email
92 / '!EM_BCC! CourseFeedback@capella.edu'
93 / '!EM_FROM! CourseFeedback@Capella.edu'
94 / '!EM_SUBJECT! Course Evaluation Results for ' Instructor_First_Name
Instructor_Last_Name
95 / '!EM_ATTACH!' attach
96 / '!EM_SEND!'
97 / '!EM_NEWMSG!'
98 / '!EM_ABORT!';

99 end;
100 else do;
101 put 'WARNING: ' Instructor_Email ' does not appear to be a valid email
address.'
102 / 'NOTE: Nothing was sent to this recipient.';
103 output instructor_Fails;
104 end;
105 output instructor_list;
106 run;
107 filename outbox clear;
108 option obs=max;

Highlights and Hiccups
When sending out the emails, any email address can be used in the “from” field (Line 93). However, the recipient will
see that it was sent by you (or your computer’s network address) “on behalf of” the email listed. People looking to
modify the program for automated emails that get distributed externally should be aware of this and may want to find
a dummy account from which to run the program.

Another option would be to modify the relay settings on your company’s mail server. This is something that should be
checked beforehand, regardless of whether or not the email will be internal or external. When first using this program,
external email addresses were automatically rejected because our SASV9.cfg1 file was pointing to an internal mail
server, rather than to our general smtp server.

1For us, this file was located at in C:\Program Files\SAS\SAS 9.1\nls\en. Check the –EMAILHOST option to make
sure it is right.

Applications DevelopmentSAS Global Forum 2008

As is usually the case, the biggest ‘hiccup’ to full implementation of the program was unclean data. Our final data set
was pulled from many other data sets and, initially, a lot of data got dropped because the ‘join’s in the SQL code were
not being exactly matched (e.g. ‘BUS3040’ didn’t match with ‘bus3040’) or because special characters in names were
affecting the calls to excel and the mail server.

Much of the code for creating the excel files and generating the emails is dedicated to making sure the instructor’s
name was coming through in a standard fashion. Despite this, dirty data from the source (e.g. an apostrophe in
someone’s name) caused problems much further down the line (e.g. went through file creation wonderfully, but would
not email out).

CONCLUSION
As with most SAS programs, the above program decreased workload and improved efficiency while removing human
error from the process. More importantly to us, the program drastically shortened the time between when a course
ended and when the instructor got feedback. (Plus, we can ensure that they are receiving the feedback at all). This
sort of immediate and consistent feedback is necessary for improving the caliber of our courses and it would not have
been done without SAS ☺.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2008

	2008 Table of Contents

